Final Minutes 1st meeting
Working Group 1 'Special subjects'

Date: Thursday 13 February 2020, 10:00-17:00
Place: Room 0B, Centre Borschette (CCAB), Rue Froissart 36, Brussels, Belgium

The list of attendants is in Annex I.

1. Opening / approval draft agenda / introduction of project & team

René Kemna (VHK) opens the meeting, and introduces host of the meeting Veerle Beelaerts (policy officer EC). Veerle Beelaerts gives a short introduction of the project and the goal of the meeting. René Kemna (chair, VHK) explains the different working groups and the topics that structure today’s meeting. The (draft) agenda is accepted.

Note: The topics below follow the structure of the presentations (available at www.ecoboiler-review.eu) and do not repeat the substance of the slides (unless required for context)

2. Decarbonising gas-grid, introduction

René Kemna gives a short presentation on the topic.

3. Albert van der Molen (Stedin)

Albert van der Molen, Stedin (DSO1, 2,5 mln end-users in the west of the Netherlands) gives a presentation about the use of hydrogen for heating purposes from a distributors point of view. Stedin worked together with other parties to investigate options for district heating, all-electric and (low carbon) gas networks2.

The main problem for DSO’s when changing gas admixture (or going for 100% H2) is that they do not know the appliances used in homes (“behind the meter”) which is necessary to ensure the safety of the transition. For a project on the isle of Ameland Stedin assessed all appliances present in households and found that some owners still had 60 year old atmospheric gas heaters that are not safe for handling H2.

A follow-up project is the Rozenburg project were 100% H2 is generated on-site and used by boilers from three different suppliers certified for this project only to heat a number of apartments. This project showed that there are no technical barriers for modern boilers.

1 DSO = Distribution System Operator (operator for the networks that connect the individual consumers to the transmission system). TSO = Transmission system operators (the backbone infrastructure, at national or regional level)
2 https://www.stedin.net/zakelijk/branches/overheden/het-openingsbod/resultaten
In order to make the Dutch natural gas grid ready to distribute 100% H₂ a KIWA study estimated the total costs at €700 million.

4. Augustijn van Haasteren (EC, DG ENER, Unit B2)

Augustijn van Haasteren made an oral presentation (no slides) on the transition to low carbon gas supply from the perspective of the European Commission. He discussed the Green Deal (September 2019) and the regulations relevant for gas suppliers.

He expects more decentralised connections (less top-down, also bottom-up gas streams) and a need for an update of the infrastructure, plus associated regulations. He stated that although gas is a cross-border market, each region may have a different approach to decarbonising (biomethane in France, hydrogen in the northern part of western EU, etc.). He also mentioned methane leaks and their relevance (methane is much more potent GHG than CO₂).

He expects the role of gases in the overall energy supply to diminish, but that of natural gas to diminish more strongly. Use of H₂ is to a certain degree already covered by existing Regulations and Directive, but separate networks of H₂ are not yet regulated in a EU framework. He admits that there are limits as to how much H₂ can be added to gas (blends) as appliances may become a bottleneck. This is a typical ‘chicken-and-egg’ situation that needs resolving.

He also emphasised that the costs of the transition need to be attainable in order to ensure support for the transition.

René Kemna asks whether it is decided to keep decarbonised gas (e.g. H₂) open as option for the short/medium/long term. Augustijn van Haasteren replies that this is not easily answered, as much depends on costs: It has to be affordable and manageable. René Kemna adds that the gas-grid investments are mainly to satisfy space and water heating demands, and less that of industries. If no transition will take place it will become obsolete. Augustijn van Haasteren replies that the decarbonisation is also very much a “bottom-up” affair, driven by local forces.

5. Paul Gelderloos (BDR, Therma), Lecture ‘Introducing the Hydrogen Boiler’

Paul Gelderloos (BDR, Therma) gives a presentation about the status of H₂ boilers and projects in the Netherlands and the UK. He states that one needs to be proactive and not wait until somebody else in the chain does something.

He showed that 100% H₂ ready boilers exist and are being tested (among others in the Rozenburg project). These boilers are quite similar to natural gas boilers and even fit in the same casing. Differences are found in the burner as the flame speed of H₂ is 7 times higher than that of CH₄, and the flame detector. At the moment the boiler has built-in redundancy for ultimate safety at this stage.

Eva Hennig (Eurogas)
Eva Hennig presented the proposal for gas definitions of natural gas, low-carbon gas, decarbonised gas and renewable gas, as discussed by 7 gas associations during the last Forum in Madrid. She mentions the possible need for ‘Guarantees of Origin’ (similar to renewable electricity). She showed how hydrogen can be introduced in TSO and DSO systems and presented a Marcogaz overview of 63 reports on hydrogen admission. She confirmed that Member States operate on different paths, for instance France focuses on biomethane whereas the Netherlands, Germany and the UK (Scotland in particular) focus on hydrogen.

Presentation clarification questions

Gunnar Boye Olesen asks Paul Gelderloos whether the standards for a blend or 100% H\textsubscript{2} appliances are available. Paul Gelderloos replies that there are no standards in place at the moment dealing with blends or 100% H\textsubscript{2}. This is not necessary for the moment as the Gas Appliance Regulation (for safety) is leading. For blends up to 20% H\textsubscript{2} current standards can be used as it falls within the limits defined. For 100% H\textsubscript{2} a field test approval needs to be issued. Tests are ongoing in KIWA regarding risks and lifetime. Later on Paul Gelderloos adds that he prefers solving related issues through technical standards by experts rather than Transitional Methods.

Mike Scholand asks Albert van der Molen if the new gas meters are included in the €700 mln mentioned as costs for a gas grid change in the Netherlands. Albert van der Molen answers that the costs only cover the cost of the infrastructure, excluding the gas meters. The reason for this is that some, natural gas, meters at the moment already can handle 100% H\textsubscript{2} and some do not. Note however that even if the gas meter can measure the amount of H\textsubscript{2} it may not be sufficient for billing.

Mike Scholand says he thinks that hydrogen readiness should be visible on the energy label. Paul Gelderloos disagrees as this information would be on a nameplate marking, and should not burden the already dense label information.

Eva Hennig states that most of the grid is suitable for transport of hydrogen (polyethylene coating/pipes) and that other solutions (adding inhibitors) are also being assessed. The lifespan of gas meters (15 years) is a lot shorter than that of the gas grid, and this may enable the development of more flexible and more intelligent grids (smart sensors, proper billing, etc.)

6. Decarbonising gas-grid, discussion

René Kemna asks for responses from Member States specifically, before handling industry comments.

Janusz Staróscik asks for the timeframe for H\textsubscript{2} to reach commercial level? Paul Gelderloos expects that demonstration projects (growing in size, 'Leeds, UK' is several thousand boilers) will go on until 2025-203, and that complete portfolio’s will be ready early 2030 (provided the 'chain' is ready as well). Rene Kemna asks for the Polish policy for hydrogen. Janusz Staróscik replies that the energy supply will diversify mainly. Later on he adds that Poland keeps the 100% hydrogen option open, but also allows for local developments.
Jesper Ditlefsen states Denmark wants to become carbon-neutral before 2050 and considers H_2 as an inefficient and expensive option compared to heat pumps. René Kemna replies that although the Member States decide whether H_2 is used or not, the question remains whether Ecodesign should keep the option for H_2 appliances open or whether – once the EU decides to go carbon neutral – we need to change all boilers overnight.

Théophile Legoupil adds that 100% H_2 is not the only option and mentions that in France 7% of gas is biomethane, to increase to 10% in 2030. He sees a standardisation request to develop standards as a first step. He is not in favour of a 'bonus'.

Carlos Lopes says that Sweden wants to be carbon-neutral in 2045 instead of 2050. He agrees with Théophile that standardisation work should start quickly so that more data based on test standards become available. He is not in favour of a 'bonus, but agrees with an 'icon'.

Hans-Paul Siderius questions the need for regulating this, as he sees no immediate 'ban' for hydrogen products (is there a problem?). He opposes a 'bonus' but can agree with an 'icon' and does not consider the information on a nameplate to be as effective.

Holger Thamm states that the infrastructure argument is not in the scope of Ecodesign regulation. He agrees with Hans-Paul Siderius that there is nothing hindering the development of H_2. René Kemna replies that current boilers are not suitable for 100% hydrogen and thus cannot be made carbon-neutral. Once that moment arises, it is better to have boilers that are ready for this change. By not making this possible, the option for carbon-neutral gas is banned.

Paolo Basso states that boilers currently in the market can handle 100% biomethane, and many of them can handle up to 20% H_2, but customers are not aware of this. Decarbonisation of the gas grid is a decision that needs to be made at Member State or regional level not EU level, while ecodesign aims to support the single market. He mentions we still have some 2 generations of boilers to go before 2050. He also mentions the EU project THyGA in which up to 100 residential gas appliances are tested to provide a generic protocol that can be adapted for virtually any appliance and a validated certification protocol for different levels of hydrogen in natural gas. ()

Eva Hennig adds that TSOs/DSOs look at cost-effectiveness: They will go to a certain level of blending, hold this level, decide on changes (may depend on local energies) and then jump to a next level. Adding a certain percentage to the blend every time is not cost effective.

Albert van der Molen states that the DSO’s are not the problem, the grid can handle H_2, but the end-user is the problem. They need to know what appliances they have and if it can handle a certain blend of gas up to 100% H_2. The problem is that DSOs cannot easily check behind the front door to see what is there.

Alexandra Tudoroiu-Lakavice states that decarbonisation of the grid is important, but also broader than Ecodesign and Energy labelling, and requires a road map. She states

that the very efficient use of hydrogen in cogeneration products can offset some of the losses during production.

Stella Benfatto agrees with previous speakers that Ecodesign is not the place to discuss the decarbonisation of the gas grid. Nor does she agree with an efficiency bonus, as this would alter the purpose of Ecodesign and labelling (promote energy efficiency).

Stephan Kolb doubts the implicit assumption that every product sold today is able to handle blends up to 20/30% hydrogen. He says readiness for blends up to 20% or 30% is a no-regret measure as it ensures roll-over of stock with products at zero additional cost, adding that harmonised criteria / logo for non-mandatory 100% H2 readiness, or 100% H2 in the condition as placed on the market, are needed to guide innovation and ensure an internal market for such products.

Malgosia Rybak mentions that propane/butane is used away from the gas grid and already now offers decarbonised solutions (renewable propane/butane). She agrees with other speakers that ecodesign is not the right tool to decarbonise the gas grid. She says it should be about energy efficiency.

Christoph Schreckenberg mentions that there are already several projects ongoing in relation to standardisation of hydrogen appliances. German DVGW is testing some 400-500 appliances on a small grid with blends up to 20% H₂ and will go to 30% in another project. He asks for focus on admixtures, not only 100% H₂.

Stephane Arditi states that technologies might develop slower than we expect. He supports an early consideration of hydrogen as option in a revised Ecodesign regulation may enter into force earliest 2025, so the earlier we start, the earlier the investment can start. He supports a 100% hydrogen ready icon on the label. He does ask for more information on life cycle costs of options to decarbonise. As regards decarbonisation of the gas grid he has little interest in blending as consumers cannot influence that aspect. He expects that hydrogen will first be applied in industrial processes, rather than domestic boilers.

Luc de Torquat asks whether the proposal is to make hydrogen readiness mandatory. As Member States make their own choices, a mandatory requirement is confusing. He adds that parts of the gas grid (ductile cast iron pipes) cannot handle H₂. Eva Hennig confirms that ductile and steel pipes cannot handle H₂, but large segments of the grid can handle it. Furthermore there are options to avoid embrittlement of pipes.

Paolo Basso states that EHIS sees opportunities for hydrogen and biofuels to decarbonise heating, but adds there are many more options. He mentions that it also depends on the actual blends (admixtures) supplied.

Holger Thamm states that using green hydrogen for heating in boilers requires a lot more electricity than using heat pumps. Jesper Ditlefsen agrees.

Alexandra Tudoroiu-Lakavice states that we need to look at a broader perspective. Not only between heat pumps and H₂, and states that full-electric solutions still require significant amounts of fuels. She advocates emphasising the carbon efficiency of products rather than just energy.
Gunnar Olesen states the high electric scenario appears more efficient, also enabled by more smart technology, and mentions he sees no proof for the excessive investments to reach this. Nonetheless he supports having an icon for H2 readiness on boilers and opposes bonuses affecting energy efficiencies.

René Kemna summarises that the discussion shows the main priority is a standardisation request for standards for blends/100% hydrogen appliances. The need for a mandatory 100% hydrogen readiness did not receive full support. Bonuses received no support at all. He asks for more written comments on issues discussed (indicative deadline: one month from 13-2-2020).

7. Primary energy factor, impact on limits

René Kemna presents a proposal for revised ecodesign minimum energy efficiency values and introduces three questions related to the PEF discussion.

Hans-Paul Siderius agrees that the new PEF is introduced and used. As regards Q2 he admits that rescaling is not the prime purpose of this review but adds that if an early rescaling is preferred he is not in principle against.

Mélissa Zill is in favour of rescaling the label only once in the given timeframe and has a proposal for this. Gunnar Boye Olesen also favours one rescaling exercise, preferably as soon as possible. Later on he adds that fuel boilers should not be labelled as ‘A’.

Paolo Basso is in principle agreed with the update of the pef, but asks for an assessment of the conversion coefficient in Ecodesign, to know what is behind the figures. Concerning Q2, he prefers keeping A+, but he will elaborate in written comments.

Jesper Ditlefsen has no issue with the PEF correction. Regarding Q2 he agrees with ECOS and supports an early, one-time only rescaling, as he finds it misleading that condensing boilers are still in class A.

Carlos Lopes supports the new PEF and agrees to have one and early rescaling (earlier then 2026). Furthermore, gas (fossil fuel) boilers should not remain class A. He adds that there should remain enough classes or differentiation between products also with this new PEF.

William Walker Rosevinge Rode adds that the focus must be on what is affordable. Going all electric can be the preferred option, but if consumers have to pay more they will be reluctant.

René Kemna states that the uniform PEF is essential to harmonise regulations for products in the EU single market, and will never be ideal for every Member State.

Eva Hennig states that we must be clear that the boiler itself is not fossil, but the natural gas is. When we change this fuel to decarbonised gas it will not be fossil anymore.

Hans-Paul Siderius adds that we should have a PEF for gas similar to the PEF for electricity because this is a combination of all possible electricity sources.

Michael Pittner is in favour of the PEF-correction and emphasises that products that are phased out in the present situation should not be allowed when applying the new PEF.
Janusz Staróscik agrees with the PEF correction, but asks for time to develop new products and proposes to wait with the label rescaling. He adds that heat pumps are not always the best option and advocates a more diverse approach, for instance an electric boiler in combination with PV panels.

Stefan Thie states that requirements for gas heat pumps should not be modified because of a revised PEF. He asks for the basis for the option to raise the minimum energy efficiency of LT heat pumps to max. 175%, and adds that this requirement would be problematic for large heat pumps in particular.

Stephan Kolb says that national decisions should not be mixed with combustion technologies and advises caution as many consumers still rely on gas to make an affordable transition to low GWP heating.

Carlos Lopes states that he did not propose to 'ban' fuel boilers, but that fuel boilers should simply not be promoted as 'A' anymore, with 90% efficiency they could be in the one but least efficient class (electric boilers being least).

Christoph Schreckenberg mentions existing labelling schemes where existing fuel boilers can still reach 'A' classes, which would be at odds with the new EU label putting these at 'F'. What would be the conclusion of the consumer he asks.

Stella Benfatto is in favour of the new PEF. She asks for a specific assessment for gas heat pumps and hybrids. Concerning Q2 it has to be based on the efficiency of products in the market.

Stephane Arditi states that Ecodesign cannot be made to fit the particular situation in a Member State. He asks for more information on the life cycle costs (LCC). René Kemna replies that the review study is not the same as a preparatory study and adds that such a calculation may lead to a more lenient outcome than before as electricity prices have not escalated as predicted before 2008.

Carlos Lopes has sent comments on regarding LT (low temperature) and repeats he opposes a system temperature (at Tdesign) of 65°C instead of 55°C as buildings have (and will be) improved over time. The high temperature – low temperature efficiency curve should be followed, expressed as percentages and not as percentage points.

William Walker Rosevinge Rode mentions he could not reproduce the LLCC in the study4 and has examples of PV combined with electric heaters that still are quite efficient. The study should not result in penalising green products.

8. Micro-cogeneration

Jesper Ditlefsen will provide written comments.

Paul Gelderloos states that there should be a fair level of playing field between the technologies. The marginal PEF should be applied (at minimum 2.99) in order to get a level playing field but the proposed 2.65 is considered a compromise. The pef should also be expressed, for ecodesign purposes, using gross calorific values of fuels. And he

4 Later on it was clarified the statement was related to a study on room air conditioners (RAC), not water heaters.
adds he prefers using the specific energy consumption, rather than an energy efficiency as performance indicator. He proceeds to present slides that show the expected efficiencies according various methods (also described in the review study for space/combo/combination heaters, July 2019). He states the only method that results in increasing savings at increasing electric efficiency (well beyond average grid) is the one proposed in EN 50465. René Kemna asks how this method relates to the primary energy savings in the energy efficiency directive of 2012. Paul Gelderloos replies that he can prove that, given certain assumptions for the system in which it operates, the two methods are mathematically identical. He will provide details later on.

Alexandra Tudoroiu-Lakavice supports this proposal and adds that microCHP will complement heat pumps. She expects that with further system integration the line between electricity and heat blurs, and the focus will be more at a system level.

Gunner Olsen agrees that a higher PEF due to benefits for local production seems logical.

Frank Dahlmanns supports the proposal by Gelderloos and adds that products with more than 60% electric efficiency calculated on NCV are 45% if calculated with GCV like in the Ecodesign regulation.

Stella Benfatto proposes to keep the PEF the same for all technologies, and prefers to keep it at 2.1.

Holger Thamm states it is difficult to find common ground, because a PEF of 2.1 changes the effect of mCHP.

René Kemna asks if we should include fuel cells in a separate regulation?

Luc de Torquat suggests keeping the PEF of 2.1, and add an additional CHP factor to arrive at 2.65. This way the pef can remain the same for all technologies Michael Pittner mentions this is similar to the 'BLF' (Biomass Label Factor) in labelling of biomass heaters.

Paolo Basso adds that fuel cells should not be discriminated.

Michael Pittner prefers to avoid endless discussion on methods and suggests to place cogeneration outside the scope.

René Kemna welcomes written comments on this subject.

9. Shared chimney problem B1, C4 and C8

René Kemna and Martijn van Elburg explain that the problem with these boilers is that the current regulation has banned C4/C8 boilers from the market. As such boilers cannot be replaced by condensing boilers because of the shared chimney, there is no replacement boiler anymore.

The question is to apply lower efficiency thresholds to C4/C8 boilers as well (similar as B1), or solve it in another way e.g. through chimney renovation? A second question is that if such boilers are continued on the market, how can be made sure this does not create a loophole.
Franz Zach is in favour of keeping the B1 exemption and adds that type B22 types have similar problems. There is an Austrian report\(^5\) on this issue (only in German). One solution discussed in that report is a (prototype) boiler that can operate in both non-condensing boilers and condensing mode (applicable when all owners of the apartment building have switched boilers and the chimney is renovated).

René Kemna asks if the study reports on costs of chimney renovations. Franz Zach replies that the chimney needs to be renovated anyway once all boilers are replaced by condensing ones.

René Kemna adds that sources indicate that sometimes a mix of condensing and non-condensing boilers can be allowed, but that countries are not aware of it. He pleads for more intensive information exchange between Member states.

Michael Pittner is not in favour of more exemptions. The main problem is the individually owned boiler and the collectively owned chimney.

Théophile Legoupil has no problem with leniency for C4/C8 boilers and is mainly worried about B1 as these are inherently more unsafe. He will provide written comments.

René Kemna states that (illegal) non-condensing boilers are still produced and this simply has to stop one time or another. Therefore solutions for these types of boilers are needed.

Stephane Arditi wants to know the costs for boiler replacement.

Jesper Ditlefsen states that in case of subsidies, it would be better if the more than just a chimney renovation is subsidised.

Stephan Kolb does not want more exemptions and in Germany the subsidy shift is in full swing (less for fossil fuel appliances).

Agnetha Mey adds that she will pass on the number on the subsidies in Germany.

Carlos Lopes adds that he is also not in favour of more exemptions.

René Kemna adds that maybe a first step is knowledge transfer between Member States, that will make changes more cost effective.

10. **Any other business**

Paolo Basso asks if it is possible to circulate the presentations as quickly as possible. Rene Kemna answered they are updated on the projects website: https://www.ecoboiler-review.eu/documents.htm

Annex 1 – Attendance list

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luigu Tischer</td>
<td>AristonThermo</td>
</tr>
<tr>
<td>Franz Zach (by phone)</td>
<td>Austria</td>
</tr>
<tr>
<td>Michael Pittner</td>
<td>BBT</td>
</tr>
<tr>
<td>Paul Gelderloos</td>
<td>BDR Thermea</td>
</tr>
<tr>
<td>Massimo Prencipe</td>
<td>Carrier</td>
</tr>
<tr>
<td>Simon Minett</td>
<td>Challoch Energy</td>
</tr>
<tr>
<td>Michael Scholand</td>
<td>CLASP</td>
</tr>
<tr>
<td>Alexandra Tudoroiu-Lakavice</td>
<td>COGEN</td>
</tr>
<tr>
<td>Valérie Lammerant</td>
<td>Daikin/EHI</td>
</tr>
<tr>
<td>Jesper Ditlefsen</td>
<td>Denmark</td>
</tr>
<tr>
<td>Gunnar Boye Olesen</td>
<td>ECOS</td>
</tr>
<tr>
<td>Mélissa Zill</td>
<td>Ecostandard</td>
</tr>
<tr>
<td>Stephane Arditi</td>
<td>EEB</td>
</tr>
<tr>
<td>Paolo Basso</td>
<td>EHI</td>
</tr>
<tr>
<td>Stella Benfatto</td>
<td>EHPA</td>
</tr>
<tr>
<td>Patrick Milin</td>
<td>Engie</td>
</tr>
<tr>
<td>Stefan Thie</td>
<td>EPEE</td>
</tr>
<tr>
<td>Sandrine Devos</td>
<td>Eurofuel</td>
</tr>
<tr>
<td>Eva Hennig</td>
<td>Eurogas</td>
</tr>
<tr>
<td>Niels Smeets</td>
<td>Belgium</td>
</tr>
<tr>
<td>Théophile Legoupil</td>
<td>France</td>
</tr>
<tr>
<td>Agnetha Mey</td>
<td>Germany</td>
</tr>
<tr>
<td>Luc de Torquat</td>
<td>groupe Atlantic</td>
</tr>
<tr>
<td>Ernst-Moritz Bellingen</td>
<td>IWO Eurofuel</td>
</tr>
<tr>
<td>Malgosia Rybak</td>
<td>Liquid gas Europe</td>
</tr>
<tr>
<td>Hans-Paul Siderius</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>William Walker Rosevinge Rode</td>
<td>Norway</td>
</tr>
<tr>
<td>Michael Zehe</td>
<td>Senertec/BDR Thermea</td>
</tr>
<tr>
<td>Martin Bergemann</td>
<td>Siemens</td>
</tr>
<tr>
<td>Ettore Rossi</td>
<td>Sitgroup</td>
</tr>
<tr>
<td>Frank Dahlmanns</td>
<td>Solidpower</td>
</tr>
<tr>
<td>Janusz Staróscik</td>
<td>Poland</td>
</tr>
<tr>
<td>Albert van der Molen</td>
<td>Stedin</td>
</tr>
<tr>
<td>Holger Thamm</td>
<td>Stiebel-Eltron</td>
</tr>
<tr>
<td>Carlos Lopes</td>
<td>Sweden</td>
</tr>
<tr>
<td>Christoph Schreckenberg</td>
<td>Vaillant Group</td>
</tr>
<tr>
<td>Stephan Kolb</td>
<td>Viessmann</td>
</tr>
<tr>
<td>Daniela Kemna</td>
<td>VHK</td>
</tr>
<tr>
<td>René Kemna</td>
<td>VHK</td>
</tr>
<tr>
<td>Martijn van Elburg</td>
<td>VHK</td>
</tr>
<tr>
<td>Pepijn Wesselman</td>
<td>VHK</td>
</tr>
<tr>
<td>Roy van den Boorn</td>
<td>VHK</td>
</tr>
<tr>
<td>Gunther Berthold</td>
<td>Worgas</td>
</tr>
</tbody>
</table>